Kumail Alhamoud
Kumail Alhamoud
Home
Publications
Experience
Awards
Contact
Light
Dark
Automatic
1
Vision-Language Models Do Not Understand Negation
We systematically evaluate and improve negation understanding in VLMs, first exposing severe affirmation bias and then proposing a data-centric fix.
Kumail Alhamoud
,
Shaden Alshammari
,
Yonglong Tian
,
Guohao Li
,
Philip Torr
,
Yoon Kim
,
Marzyeh Ghassemi
,
Equal contribution
PDF
Cite
Code
Project
Video
FedMedICL: Towards Holistic Evaluation of Distribution Shifts in Federated Medical Imaging
We introduce FedMedICL, a unified framework and benchmark to evaluate the impact of simultaneous distribution shifts (label, demographic, and temporal) on federated learning for medical imaging.
Kumail Alhamoud
,
Yasir Ghunaim
,
Motasem Alfarra
,
Thomas Hartvigsen
,
Philip Torr
,
Bernard Ghanem
,
Adel Bibi
,
Marzyeh Ghassemi
,
Equal contribution
PDF
Cite
Real-Time Evaluation in Online Continual Learning: A New Hope
Current evaluations of Continual Learning (CL) methods typically assume that there is no constraint on training time and computation. …
Yasir Ghunaim
,
Adel Bibi
,
Kumail Alhamoud
,
Motasem Alfarra
,
Hasan Hammoud
,
Ameya Prabhu
,
Philip H. S. Torr
,
Bernard Ghanem
PDF
Cite
PIVOT: Prompting for Video Continual Learning
We leverage learnable tokens and large-scale pretrained models to mitigate forgetting in video class incremental learning.
Andrés Villa
,
Juan León Alcázer
,
Motasem Alfarra
,
Kumail Alhamoud
,
Julio Hurtado
,
Fabian Caba Heilbron
,
Alvaro Soto
,
Bernard Ghanem
PDF
Cite
vCLIMB: A Novel Video Class Incremental Learning Benchmark
Continual learning (CL) is under-explored in the video domain. The few existing works contain splits with imbalanced class …
Andrés Villa
,
Kumail Alhamoud
,
Victor Escorcia
,
Fabian Caba Heilbron
,
Juan León Alcázar
,
Bernard Ghanem
PDF
Cite
Code
Project
Cite
×